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Appendix A: REFORMS checklist template

Visit reforms.cs.princeton.edu for the latest version.

About. The REFORMS checklist lists items that should be reported in a scientific study that
uses machine learning (ML) methods. It is intended to accompany the paper or report that
introduces an ML model: for instance, as an appendix or supplemental material. The checklist
consists of 32 questions spread across 8 modules. For each item, either list the section name,
section number, or page number in the paper where the item is reported, or justify why a given
item is not filled out. Note that not all of these items need to be reported in the main text of the
paper; they could be reported in an appendix or supplementary files.

Some items in the checklist could be hard to report for specific studies. For instance, including
a reproduction script to computationally reproduce all results (2e.) might not be possible for
studies performed on academic computing clusters or those which use private data that
cannot be released. Instead of requiring strict adherence for each item, we suggest authors
and referees decide which items are relevant for a study and where details can be reported
better. The items in our reporting standards could be a helpful starting point.

Use the accompanying Guidelines for reporting ML-based science to see how each item can
be filled out. We also provide a sample checklist based on Obermeyer et al. (2019) (URL:
https://reforms.cs.princeton.edu/obermeyer-sample.pdf)

This is a beta version of our checklist. We are soliciting feedback and will continue to update
the template (visit reforms.cs.princeton.edu for the latest version). For feedback or questions,
contact: sayashk@princeton.edu. The checklist starts on the page after the author list. After
filling it out, save it starting from that page.
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Checklist for reporting ML-based science

Module 1: Study goals

1a. Population or distribution about which the scientific claim is made.

1b. Motivation for choosing this population or distribution (1a.).

1c. Motivation for the use of ML methods in the study.

Module 2: Computational reproducibility

2a. Dataset used for training and evaluating the model along with link or DOI to uniquely
identify the dataset.

2b. Code used to train and evaluate the model and produce the results reported in the
paper along with link or DOI to uniquely identify the version of the code used.

2c. Description of the computing infrastructure used.
● Hardware infrastructure: CPU, GPU, RAM, disk space etc.
● Operating system.
● Software environment: Programming language and version, documentation of all

packages used along with versions and dependencies (e.g., through a
requirements.txt file).

● An estimate of the time taken to generate the results.

2d. README file which contains instructions for generating the results using the provided
dataset and code.

2e. Reproduction script to produce all results reported in the paper1.

Module 3: Data quality

1 Note that this is a high bar for computational reproducibility. It might not be possible to provide such a
script—for instance, if the analysis is run on an academic computing cluster, or if the dataset does not
allow for programmatic download.
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3a. Source(s) of data, separately for the training and evaluation datasets (if applicable),
along with the time when the dataset(s) are collected, the source and process of
ground-truth annotations, and other data documentation.

3b. Distribution or set from which the dataset is sampled (i.e., the sampling frame).

3c. Justification for why the dataset is useful for the modeling task at hand.

3d. The definition of the outcome variable of the model along with descriptive statistics, if
applicable.

(The outcome variable is also known as the dependent variable, the target variable, the
output variable or the predicted variable).

3e. Number of samples in the dataset.

3f. Percentage of missing data, split by class for a categorical outcome variable.

3g. Justification for why the distribution or set from which the dataset is drawn (3b.) is
representative of the one about which the scientific claim is being made (1a.).

Module 4: Data preprocessing

4a. Identification of whether any samples are excluded with a rationale for why they are
excluded.

4b. How impossible or corrupt samples are dealt with.

4c. All transformations of the dataset from its raw form (3a.) to the form used in the model,
for instance, treatment of missing data and normalization.

Module 5: Modeling

5a. Detailed descriptions of all models trained, including:
● All features used in the model (including any feature selection).
● Types of models implemented (e.g., Random Forests, Neural Networks).
● Loss function used.

5b. Justification for the choice of model types implemented.
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5c. Method for evaluating the model(s) reported in the paper, including details of train-test
splits or cross-validation folds.

5d. Method for selecting the model(s) reported in the paper.

5e. For the model(s) reported in the paper, specify details about the hyperparameter tuning:
● Range of hyper-parameters used and a justification for why this range is

reasonable.
● Method to select the best hyper-parameter configuration.
● Specification of all hyper-parameters used to generate results reported in the

paper.

5f. Justification that model comparisons are against appropriate baselines.

Module 6: Data leakage

6a. Justification that pre-processing (Section 4) and modeling (Section 5) steps only use
information from the training dataset (and not the test dataset).

6b. Methods to address dependencies or duplicates between the training and test datasets
(e.g. different samples from the same patients are kept in the same dataset partition).

6c. Justification that each feature or input used in the model is legitimate for the task at
hand and does not lead to leakage.

Module 7: Metrics and uncertainty

7a. All metrics used to assess and compare model performance (e.g., accuracy, AUROC
etc.). Justify that the metric used to select the final model is suitable for the task.

7b. Uncertainty estimates (e.g., confidence intervals, standard deviations), and details of
how these are calculated.

7c. Justification for the choice of statistical tests (if used) and a check for the assumptions
of the statistical test.

Module 8: Generalizability and limitations
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8a. Evidence of external validity.

8b. Contexts in which the authors do not expect the study’s findings to hold.
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Appendix B: Guidelines for filling out the REFORMS checklist

Visit reforms.cs.princeton.edu for the latest version.

These guidelines provide documentation for each item in the Reporting standards for
ML-based science. We elaborate on why researchers should consider reporting the item, link to
additional helpful resources to accomplish each item and add references to articles that
describe the issues in depth.

We also provide a sample checklist based on Obermeyer et al. (2019) (URL:
https://reforms.cs.princeton.edu/obermeyer-sample.pdf).

As noted in our paper, some of the items in our reporting standards could be hard to report for
specific studies. For instance, including a reproduction script to computationally reproduce all
results (2e.) might not be possible for studies performed on academic computing clusters or
those which use private data that cannot be released.

Instead of requiring strict adherence for each item, we suggest authors and referees decide
which items are relevant for a study and how details can be reported better.

Module 1: Study design

The items in this section help communicate the purpose and goals of the study and how
various decisions in the study design were arrived at. Details about the design of the study are
important to clarify the applicability of the scientific claims of the study. They also help
communicate the motivation behind researchers’ various degrees of freedom, i.e., decisions
researchers make throughout the research and analysis process that influence their findings.

1a. Population or distribution about which the scientific claim is made.

Researchers make scientific claims about a given distribution or population that they are
interested in studying. Note that this is the population of interest, and not the sample, which
can be specified later in (3b.)

To communicate the applicability of the claims, explicitly report the distribution or population
about which you expect the scientific claims to hold. For example, “US children aged between
12 and 18” or “people engaging in online debates on climate change.”

1b. Motivation for choosing this population or distribution (1a).

http://reforms.cs.princeton.edu
https://reforms.cs.princeton.edu/obermeyer-sample.pdf
https://www.science.org/doi/10.1126/science.aax2342
https://reforms.cs.princeton.edu/obermeyer-sample.pdf
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Justify why the researchers chose this population or distribution. For example: “We aimed to
determine whether existing vaccines for COVID-19 are effective in children aged between 12
and 18. There are no prior studies on vaccine efficacy in this population.”

A valid motivation is having access to a dataset that inspired a research question, and thus the
population or distribution of interest is limited by the dataset. For example, studying CDC data
for all U.S. counties would limit the population of interest to US counties.

1c. Motivation for the use of ML methods in the study.

Report the reasons for using ML methods and consider comparing it with alternative or
traditional methods that could be used for similar aims.

For example, if the goal of the research is to make a prediction, i.e., if explanation is not a goal
of the study, ML methods can help improve predictive accuracy.

See Hofman et al. (2021) for an overview of the different types of modeling and their aims.

Module 2: Computational reproducibility

Computational reproducibility refers to the ability of a researcher to get the same figures and
results that are reported in a paper or manuscript without making any changes to the code,
data, or computing environment. This is important for ensuring the scientific validity of a study:
errors can be uncovered quickly, independent researchers can verify the findings in a study,
and researchers can easily build on a study’s results. Several journals currently require
computational reproducibility and have specific guidelines. If you’re already using a discipline
or journal-specific checklist, specify that here.

See Liu and Salganik (2019) for a discussion on the importance and challenges of ensuring
computational reproducibility.

Sandve et al. (2013) discuss high-level imperatives and research practices that can enable
computational reproducibility.

See the Social Science Data Editors’ guidance on computational reproducibility.

https://www.nature.com/articles/s41586-021-03659-0
https://journals.sagepub.com/doi/10.1177/2378023119849803
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003285
https://social-science-data-editors.github.io/guidance/
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Include as many of the items below as possible, in supplementary documents alongside a
paper or pre-print that describes the study. Ideally, upload them to an established repository
that provides a persistent identifier for the resources (such as Harvard Dataverse or Zenodo).
Since code, data, and computational environments can have different versions over time,
include the precise version that you use to generate the results reported in a study.

For some domains, sharing the code and dataset is not possible due to the presence of
sensitive data. Specify below if such a restriction applies.

2a. Dataset

Report a permanent link or DOI to the specific version of the dataset used for training and
evaluating the model. For a discussion of the importance of DOIs, see Peng, Mathur,
Narayanan (2021).

If an original dataset was used, also include the data dictionary for the dataset. A data
dictionary describes metadata about the dataset, and familiarizes a reader to the properties
and format of the data. The US Geological Survey has a detailed guide to data dictionaries,
complete with examples and instructions.

If the dataset contains sensitive information and cannot be publicly released, consider
releasing a synthetic dataset, or releasing the data per request or application. There are
packages that support generation of a synthetic dataset such as synthpop for R.

2b. Code

Provide a commit tag (for instance, on Github, GitLab, or BitBucket), a DOI, or equivalent
documentation to precisely identify the version of the code used to train and evaluate the
model and produce the exact results reported in the paper.

In the code, include comments with explanations of variables and operations to sufficiently
mark different stages of the analysis for an unfamiliar reader. The documentation in (2d) can
refer to these comments for greater clarity.

2c. Computing infrastructure

To help readers understand the precise computing requirements for reproducing your study,
whenever possible, report the following details on the infrastructure used to generate the
results:

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/077e29b11be80ab57e1a2ecabb7da330-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/077e29b11be80ab57e1a2ecabb7da330-Abstract-round2.html
https://www.usgs.gov/data-management/data-dictionaries
https://doi.org/10.18637/jss.v074.i11
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1. Hardware infrastructure: CPU, GPU, RAM, disk space.
2. Operating system and its version.
3. Software environment: Programming language and version, documentation of all

packages used along with versions and dependencies (e.g., through a requirements.txt
file).

4. An estimate of the time taken to generate the results.

Computing infrastructure is always changing, and thus could make it difficult or impossible to
replicate a study with a slightly different environment. Having the exact details is crucial for
replication.

See Requirements File Format from Python’s pip installer for an example of how to document
package versions.

See Stodden and Miguez (2014) for more detailed best practices to document computing
infrastructure.

2d. README

Report the exact steps that should be taken by independent researchers to reproduce the
results in your study, given access to the code, dataset, and computing environment specified
in 2a-c.

A good README helps someone unfamiliar with the project by walking them through the steps
of setting up and running the code provided, starting from environment requirements and
installation, to examples of usage and expected results.

Consider using Nature’s README for software submission. See also the README template for
social science replication packages.

The “Awesome README” repository compiles examples, templates, and best practices for
writing README files.

2e. Reproduction script

A script to produce all results reported in the paper using the code and dataset can
significantly reduce the time it takes for an independent researcher to reproduce the results
reported in a study.

https://pip.pypa.io/en/stable/reference/requirements-file-format/
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.ay/
https://www.nature.com/documents/nr-software-policy.pdf
https://zenodo.org/record/4319999#.Y5DIZrLMJBw
https://zenodo.org/record/4319999#.Y5DIZrLMJBw
https://github.com/matiassingers/awesome-readme
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The script should go through all steps involved in producing the results. For example, the script
should download the packages, set the right dependencies, download and store the dataset in
the correct location, set up the computational environment, pre-process the data, and run the
code to produce exactly the same results as reported in the paper.

One option is a bash script which carries out each of the steps you list in (2d). Another way is
to use an online reproducibility platform such as CodeOcean, which allows researchers to
share the required materials in 2a-c along with a reproduction script.

Note that this is a high bar for computational reproducibility, and in some cases, it might not be
possible to provide such a script—for instance, if the analysis is run on an academic
high-performance computing cluster, or if the dataset does not allow for programmatic
download. It could also be challenging to set up, and resources listed here might help. In case
you are not able to share a reproduction script, specify why.

Comi (2021) introduces CodeOcean for reproducible research, and shares how to create a
CodeOcean capsule from Git.

Module 3: Data quality

This section is focused on reporting details about how the data used for developing and
evaluating the model is collected. A good quality dataset is key to making valid scientific claims
using ML models. The items in this section help readers understand and evaluate the quality of
the data used in the modeling process.

3a. Data source(s)

Report details about the source of the dataset, separately for the training and validation data
sets (if applicable). For instance, if re-using the dataset from a previous study, cite the study
and explain what the source of the data collection was.

If collecting a new dataset, report the data collection process, who annotated the dataset, and
how the annotations were carried out. Report the time-period and geographic locations of data
collection.

You can also follow discipline-specific best-practices when releasing or using datasets.
Examples include Datasheets for Datasets (Gebru et al., 2021), Dataset Nutrition Labels
(Chmielinski et al., 2022), or the Brain Imaging Data Structure for Neuroimaging. If available,
include such supplementary documents as supplementary materials along with the paper.

https://rsh249.github.io/bioinformatics/bash_script.html
https://help.codeocean.com/en/articles/2465281-how-to-write-and-set-a-run-script
https://rse.princeton.edu/2021/03/using-codeocean-for-sharing-reproducible-research/
https://cacm.acm.org/magazines/2021/12/256932-datasheets-for-datasets/fulltext
https://doi.org/10.48550/arXiv.2201.03954
https://bids.neuroimaging.io
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3b. Sampling frame

The sampling frame is the source from which a sample is drawn (using a sampling method.)
The unit of the sampling frame is typically also the unit of the sample.

Report the sampling frame, which is the distribution or set from which the dataset is sampled.
Include the sampling method (e.g., simple random, stratified, cluster sampling, etc.) Include any
details about the distribution or population that pertains to the study (1a.).

Taherdoost, (2016) compiled a short guide to sampling in research.

3c. Justification for why the dataset is useful for the modeling task at hand

Report the rationale for why the dataset is useful for modeling and making the scientific claim
reported in the study. Justifications could describe why the dataset is relevant to the modeling
task, such as quantifying the population of interest well, or including novel insight that would
be discovered through modeling.

3d. Details about the outcome variable

The outcome or target variable of the ML model is the quantity that the model is used to
predict, detect, classify, or estimate. In other words, it is the variable of interest in the modeling
process.

Report the outcome variable of the ML model. Provide descriptive statistics (e.g., mean,
median, and variance) for the outcome variable, if applicable. For tasks with a continuous
outcome variable (i.e., regression tasks), consider providing a plot of the outcome’s
distribution, such as a histogram.

3e. Number of samples in the dataset

Report the total number of samples (for a tabular dataset, this is the total number of rows in the
dataset) as well as the number of samples in each class for a classification task.

If there are individuals or entities with multiple observations, report both the number of distinct
individuals, as well as overall rows or units of data. For example, if you have a dataset with
10,000 rows with data on 5,000 unique patients, report both of these numbers. See also (6b.)

3f. Percentage of missing data, split by class for a categorical outcome variable

http://dx.doi.org/10.2139/ssrn.3205035
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Datasets often have missing samples. An estimate of missingness can give readers an idea of
how important the methods for dealing with missing data are in a given study.

Report the number or percentage of missing samples for each feature, when possible.
Alternatively, provide summary statistics for the proportion of missing data.

See also (4c.) for methods for handling missing data.

3g. Dataset for evaluation is representative

Justify why the distribution or set from which the dataset is drawn (3b.) is representative of the
population about which the scientific claim is being made (1a.).

There are many reasons the sampling frame could be unrepresentative: for example, if it is a
convenience sample, if it under-represents minorities, or constitutes a too small sample size
(Hullman et al., 2022). If the sample is unrepresentative of the target population, note this as a
concern in the section on external validity (8a.).

Module 4: Data preprocessing

Pre-processing is the series of steps taken to convert the dataset used from its raw form into
the final form used in the modeling process. This includes data selection (i.e., selecting a set of
samples from the dataset to be included in the modeling process) as well as other
transformations of the data, such as imputing missing data and normalizing feature values.

Since pre-processing steps can influence the scientific claims made based on ML models
(Hofman et al. 2017), it is important to specify the exact steps used in a study.

4a. Excluded data and rationale

Researchers might exclude some samples from the dataset—for instance, to remove outliers or
to only focus on certain subsets. Report the criteria for selecting a subset of rows from the
initial dataset (if any).

4b. How impossible or corrupt samples are dealt with

Some datasets might have feature values that are impossible (for instance, if the height of a
human is recorded as greater than 10 feet). Some samples might have corrupt data.

https://doi.org/10.1145/3514094.3534196
https://www.science.org/doi/10.1126/science.aal3856
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Report the checks made for impossible or corrupt data. In case you find impossible or corrupt
data, report mitigation strategies, such as methods used for detecting or removing outliers.

4c. Data transformations

Researchers often perform several transformations on a dataset before using it in an ML model.
For example, they might impute missing data in a dataset using mean imputation or
over-sample data from the minority class.

Report the precise sequence of all transformations of data from its raw form to the final form
used in the model (e.g., missing data imputation, feature or outcome normalization, data
augmentation using oversampling), preferably through a flow-chart, like a STROBE flow
diagram.

Specify if each transformation is data-dependent (e.g., mean imputation) or data-independent
(e.g., log transformation). Note that data-dependent transformations must be done within splits.
For example, when using 5-fold cross-validation, perform mean imputation within each of the
folds instead of performing it on the entire data together to avoid leaking information between
the training and test data. See also 6a.

Shadbahr et al. (2022) discuss how poorly imputed data can lead to poor interpretability of the
final model.

Module 5: Modeling

There are many steps involved in creating an ML model. This makes it hard to report the exact
details of how an ML model is created, and can hinder replication by independent researchers.
Specify the main steps in the modeling process, including feature selection, the types of
models considered, and evaluation.

5a. Model description

To help readers determine how the models were trained, provide a detailed description of all
models trained over the course of the study. For each model, include:

1. Inputs (including any feature selection steps and a description of the set of features
used) and outputs

2. Types of models implemented (e.g., Random Forests, Neural Networks)
3. Loss function used

https://doi.org/10.1371/journal.pmed.0040297
https://doi.org/10.1371/journal.pmed.0040297
https://arxiv.org/pdf/2206.08478.pdf
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5b. Justification for choice of model types implemented

Describe why the types of models used are relevant for the study. Examples are “using a
standard method for this field such as regularized regressions”, or “using decision trees for high
explainability.”

Leist et al. (2022) describe various ML models that are suitable for different modeling tasks.

5c. Model evaluation method

Evaluating ML models requires testing them on data that they were not trained on, for instance
by using a held-out test set or cross-validation (CV).

Report how the dataset is split for evaluating the ML model(s), for instance:
1. Cross-validation or nested CV
2. Held-out test set (internal validation set)
3. True out-of-sample set (external validation set; where the data comes from a different

set compared to training data)

For the model evaluation method used, report details such as the number of samples in each
train-test split or CV fold, as well as the number of samples of each class in each split (for a
classification task).

Documentation from the Python package scikit learn elaborates why and how to do a
train-validation-test split.

Vehtari (2020) describes various scenarios where using CV is appropriate.

Neunhoeffer and Sternberg (2018) highlight a common failure mode: using CV for both model
selection and evaluation. Using nested CV helps address this issue.

Cawley and Talbot (2010) explore this issue in more detail and describe procedures for nested
CV (section 5.1).

5d. Model selection method

Several ML models might be fit using the training set.

Report the criteria for choosing the final model(s) reported in the study. For instance, report if
model performance on the training set, internal cross-validation fold (for nested

https://www.science.org/doi/10.1126/sciadv.abk1942
https://scikit-learn.org/stable/modules/cross_validation.html
https://avehtari.github.io/modelselection/CV-FAQ.html
https://www.cambridge.org/core/journals/political-analysis/article/how-crossvalidation-can-go-wrong-and-what-to-do-about-it/CA8C4B470E27C99892AB978CE0A3AE29
https://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf
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cross-validation) or a separate validation set was used to select the final model(s) reported in
the paper.

Raschka (2018) gives an overview of model selection techniques.

5e. Hyper-parameter selection

ML models often have hyperparameters. For example, Lasso regression has an additional
penalty term (lambda or 𝜆) that can be tuned. Tuning hyperparameters—trying different values
and picking the one that works best—can help find the optimal performance for a given model
and dataset.

Report the method used to compare the performance of different hyperparameter values. This
should include details of what values for each parameter are considered, why these values are
reasonable, how various hyperparameters are selected (for example, grid search or random
search), and which hyperparameters are used in the final model(s) reported in the paper.

5f. Appropriate baselines

If comparing model performance against baselines, justify how the baselines are tuned
appropriately and the model comparison is fair if applicable. (Note that this does not apply to
comparisons against non-model based performance, such as comparing ML methods with
human performance.)

Sculley et al. (2018) highlight several results in ML research that compare against weak
baselines.

Lin (2019) highlights that comparisons against weak baselines can make results seem
significant.

Module 6: Data leakage

Data leakage is a spurious relationship between the independent variables and the target
variable that arises as an artifact of the data collection, sampling, pre-processing or modeling
steps. Since the spurious relationship won’t be present in the distribution about which scientific
claims are made, leakage usually leads to inflated estimates of model performance. Items in
this section help detect and prevent leakage in the models developed and evaluated in a study.

https://arxiv.org/pdf/1811.12808.pdf
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://openreview.net/pdf?id=rJWF0Fywf
https://dl.acm.org/doi/pdf/10.1145/3308774.3308781
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Kapoor and Narayanan (2022) discuss the prevalence of leakage and provide “Model Info
Sheets” to detect and prevent leakage in ML-based science.

6a. Train-test separation is maintained

When information from the test set is used during the training process, it leads to overly
optimistic performance and results in data leakage.

Justify how all pre-processing (Section 4) and modeling (Section 5) steps only use information
from the training data and not the entire dataset (e.g., they were performed after the data splits
or cross-validation splits).

Vandewiele et al. (2020) show how oversampling before partitioning the training data and test
data can cause errors in models, with several studies incorrectly reporting near-perfect
accuracy.

6b. Dependencies or duplicates between training and test sets

In some cases, samples in the dataset might have dependencies. For example, a clinical
dataset might have many samples from the same patient. In such cases, the train-test split or
cross-validation (CV) split should take these dependencies into account—for instance, by
including all samples from each patient in the same CV fold or train-test split.

Similarly, duplicates in the datasets can also spread across training and test sets if the dataset
is split randomly. This should be avoided, as it leaks information across the train-test split.

Report if the dataset used has dependencies or duplicates. If it does, detail how these are
addressed (for example, by using block CV or removing duplicate rows of data).

Malik (2020) outlines alternatives for CV that helps reduce dependencies.

Bergmeir & Benítez (2012) find that blocked CV for time series evaluation deals with temporal
autocorrelation.

Hammerla and Plotz (2015) demonstrate how neighborhood bias can affect data recordings
close in time and introduce “meta-segmented CV” to deal with such dependencies.

Roberts et al. (2016) describe block CV strategies for a number of structures with
dependencies, including temporal, spatial, and hierarchical dependencies.

https://reproducible.cs.princeton.edu/#model-info-sheets
https://www.sciencedirect.com/science/article/pii/S0933365720312525
https://arxiv.org/pdf/2002.05193.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0020025511006773?via%3Dihub
https://doi.org/10.1145/2750858.2807551
https://onlinelibrary.wiley.com/doi/full/10.1111/ecog.02881
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6c. Feature legitimacy

Leakage can result from any of the features used in a model being a proxy for the outcome. For
example, Filho et al. (2021) found that a prominent paper on hypertension prediction (Ye et al.,
2018) suffered from data leakage due to illegitimate features. The model included the use of
anti-hypertensive drugs as a feature in a clinical model used to predict hypertension.

Justify why each of the features used in the model is legitimate for the task at hand. Note that
you do not necessarily need to list each feature individually; instead, you can provide
arguments for a set of features together in case the same argument applies to all of them.

Module 7: Metrics and uncertainty

The performance of ML models is key to the scientific claims of interest. Since there are many
possible choices that authors can make when choosing performance metrics, it is important to
reason about why the metrics used are appropriate for the task at hand. Additionally,
communicating and reasoning about uncertainty is important to discourage readers from
ignoring the uncertainty in the final results.

7a. Performance metrics used

Several metrics are often used to assess how well an ML model performs and to compare the
performance of different ML models. In some cases, these metrics are reported as part of a
paper’s final results, while in others, they are used to make intermediate decisions such as
identifying which models to include in the study or to decide which hyperparameters should be
used.

Report all metrics used to assess and compare model performance (e.g., Accuracy, AUC-ROC
etc.). Include metrics that are used to make decisions about which model(s) are reported as
well as the metrics used to evaluate the reported model(s).

Some metrics are unsuitable for certain problems. For example, accuracy might not be suitable
to measure the performance of an ML model in the presence of heavy class imbalance (see
Leist et al. (2022), Table 4). Justify the choice of metric(s) used for the scientific claim being
made based on the ML model.

7b. Uncertainty estimates

https://www.jmir.org/2021/2/e10969
https://www.jmir.org/2018/1/e22/
https://www.jmir.org/2018/1/e22/
https://www.science.org/doi/epdf/10.1126/sciadv.abk1942
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For each performance metric reported in a paper, report an estimate of uncertainty such as
standard deviations or confidence intervals. This could be part of graphs or tables in the paper.

Note that applying a bootstrap on the validation set is one way to get uncertainty estimates for
a population mean based on a sample from that population.

Report the uncertainty estimate. Also report how the uncertainty estimate is calculated and
justify why the method used for uncertainty estimation is valid.

Simmonds et al. (2022) outline the different sources of uncertainty that should be quantified in
a study.

Raschka (2018) walks through bootstrapping to obtain an uncertainty estimate.

7c. Appropriate statistical tests

Statistical tests used for comparing model performance come with several assumptions.

Report the type of statistical test used in the paper (if any) for comparing model performance.
Report the assumptions of the statistical test and justify why these assumptions are satisfied.

If using bootstrapped confidence intervals for performance metrics, one statistical test is to see
if the interval contains a baseline value. Raschka (2018) outlines various statistical tests for
comparing supervised learning algorithms. Note that reliance on statistical significance testing
has led to misinterpretations and false conclusions (Amrhein, 2019).

Module 8: Generalizability and limitations

8a. Evidence of external validity

External validity (or “generalizability”) refers to the applicability of a scientific claim beyond the
specific dataset based on which it is made. This includes the extent to which the findings from
a study’s sample apply to the target population, as well as the extent to which the findings
apply to other populations, outcomes, and contexts (Egami and Hartman, 2021). For example,
evaluating an ML model on a different dataset or a new clinical setting that it was not trained
on is a test of its external validity.

https://arxiv.org/abs/2206.12179
https://arxiv.org/pdf/1811.12808.pdf
https://arxiv.org/abs/1811.12808
http://www.nature.com/articles/d41586-019-00857-9
https://www.cambridge.org/core/journals/american-political-science-review/article/elements-of-external-validity-framework-design-and-analysis/2D0914404C84B3F169732FF1D5E39420
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Researchers can use a mix of quantitative and theoretical approaches to make arguments
regarding their findings' ability to generalize to other populations, outcomes, and contexts.
They can report quantitative evidence by testing their claims in out-of-distribution data. They
can make theoretical arguments about their expectations of external validity by referring to
prior literature and reasoning about the level of similarity between contexts (Simons et al.,
2017).

Report evidence regarding the external validity of the study’s findings.

8b. Contexts in which the authors do not expect the study’s findings to hold

Explicit boundaries around the applicability of a scientific claim can help clarify which settings
we should expect the scientific claims to hold in. Authors are in the best position to understand
limits to the applicability of their claims.

Report examples of settings or domains where the scientific claims made in the study do not
hold.

Raji et al. (2022) discuss issues with ML models used in real-world settings. These issues stem
in part from a lack of focus on identifying when models are not expected to work.

https://doi.org/10.1177/1745691617708630
https://doi.org/10.1177/1745691617708630
https://arxiv.org/pdf/2206.09511.pdf
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reforms: Reporting Standards for Machine Learning Based Science

Appendix C: Table of References on Reporting Quality & Problems in Scientific Literature

This appendix provides additional details on some of the citations from the main text. We include references from the main text that address: (1) the
quality of reporting in past scientific literature, or (2) examples of problems that occurred in past scientific literature. This appendix does not constitute a
comprehensive list of all published references on these topics. The table has 44 entries with details about their relevance to our review.

The citations are listed in order of appearance in the main text, with section headings corresponding to the headings from the text. Some sections from
the main text are omitted because they do not contain references that match our criteria for inclusion in the table. Some citations are included in the table
more than once because they appear in multiple sections. Many of the references focus specifically on machine learning (ML)-based science, but we also
include references about science with traditional statistical methods because some of the best practices and shortcomings are shared in ML-based science
and other quantitative sciences.

Reference Findings about reporting quality in past literature or
problems in past literature

Discipline Literature exam-
ined

ML-
Focused?

MODULE 1: STUDY GOALS
Introduction
Hofman et al., 2017, “Predic-
tion and explanation in social
systems” [1]

The authors re-evaluate data from a prior paper to demonstrate
how different (but equally reasonable) choices in research design
can lead to different results from the same data. This includes an
example of how slight differences in the definition of a research
question can lead to substantially different results.

Computational
social science

Re-evaluation of data
from 1 prior paper on
prediction of infor-
mation cascade size
on Twitter

Yes

1a) Population or distribution about which the scientific claim is made
Lundberg et al., 2021, “What
Is Your Estimand? Defining
the Target Quantity Connects
Statistical Evidence to The-
ory” [2]

Only 9 out of 32 papers papers (28%) provided sufficient infor-
mation for a reader to “confidently” identify the target popula-
tion about which the scientific claim is made (p. 553).

Sociology 32 quantitative pa-
pers in 2018 volume
of a top sociology
journal

No

Tooth et al., 2005, “Quality
of Reporting of Observational
Longitudinal Research” [3]

33 out of 49 papers (67%) define a target population. Epidemiology &
medicine

49 longitudinal stud-
ies on strokes in six
journals, 1999-2003

No

MODULE 2: COMPUTATIONAL REPRODUCIBILITY
Introduction
Verstynen and Kording, 2023,
“Overfitting to ‘predict’ suici-
dal ideation” [4]

The code for the feature selection step in a flawed prior paper
was not released, so Verstynen and Kording could not pinpoint
the exact source of errors.

Psychology,
neuroscience,
and biomedical
engineering

1 paper on prediction
of suicidal ideation

Yes

Current computational reproducibility standards fall short
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Stodden et al., 2018, “An em-
pirical analysis of journal pol-
icy effectiveness for computa-
tional reproducibility” [5]

Stodden et al. attempted to contact the authors of 204 papers
published in the journal Science to obtain reproducibility mate-
rials. Only 44% of authors responded.

Multi-
disciplinary

204 quantitative pa-
pers in Science

No

Gabelica et al., 2022, “Many
researchers were not compli-
ant with their published data
sharing statement: A mixed-
methods study” [6]

Gabelica et al. examined 333 open-access journals indexed on
BioMed Central in January 2019 and found that out of the 1,792
papers that pledged to share data upon request, 1,669 did not
do so, resulting in a 93% data unavailability rate.

Biology, health
sciences and
medicine

1,792 papers pub-
lished in 333 BioMed
Central open-access
journals in January
2019

No

Vasilevsky et al., 2017, “Repro-
ducible and reusable research:
Are journal data sharing poli-
cies meeting the mark?” [7]

Vasilevsky et al. examined the data-sharing policies of 318
biomedical journals and discovered that almost one-third lacked
any such policies, and those that did often lacked clear guidelines
for author compliance.

Biology, health
sciences and
medicine

318 biomedical jour-
nals (Biochemistry
and Molecular Biol-
ogy, Biology, Cell Bi-
ology, Crystallogra-
phy, Developmental
Biology, Biomedical
Engineering, Im-
munology, Medical
Informatics, Micro-
biology, Microscopy,
Multidisciplinary
Sciences, and Neuro-
sciences)

No

Computational reproducibility allows independent researchers to find errors in original papers
Hofman et al., 2021, “Expand-
ing the scope of reproducibility
research through data analysis
replications” [8]

Hofman et al. analyze 11 papers and find various shortcomings
in this body of literature.

Multi-
disciplinary

11 computational so-
cial science papers

No

Vandewiele et al., 2021,
“Overly optimistic prediction
results on imbalanced data: A
case study of flaws and benefits
when applying over-sampling”
[9]

Vandewiele et al. analyze 24 papers on pre-term birth prediction
and find 21 of these papers suffer from leakage.

Medicine 24 papers on pre-
term risk prediction

Yes

MODULE 3: DATA QUALITY
3a) Data source(s)
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Navarro et al., 2022, “Com-
pleteness of reporting of clin-
ical prediction models devel-
oped using supervised machine
learning: a systematic review”
[10]

98% of articles adhered to the guidelines for reporting data
source from the TRIPOD statement.

Epidemiology &
medicine

152 articles on di-
agnostic or prognos-
tic prediction models
across medical fields,
published 2018-2019

Yes

Yusuf et al., 2020, “Report-
ing quality of studies using ma-
chine learning models for med-
ical diagnosis: a systematic re-
view” [11]

24 out of 28 papers (86%) reported information about their data
source, defined as “Where and when potentially eligible partici-
pants were identified (setting, location and dates)” (p. 3).

Medicine 28 “medical research
studies that used ML
methods to aid clin-
ical diagnosis,” pub-
lished July 2015-July
2018

Yes

Kim et al., 2016, “Garbage
in, Garbage Out: Data Collec-
tion, Quality Assessment and
Reporting Standards for Social
Media Data Use in Health Re-
search, Infodemiology and Dig-
ital Disease Detection” [12]

Studies that utilize social media data frequently omit important
information about their data collection process, such as details
about the development and assessment of search filters. This
paper provides a framework for reporting this information.

Health media Studies that use so-
cial media data (this
is not a formal review
paper, but it provides
several examples)

No

Geiger et al., 2020, “Garbage
In, Garbage Out? Do Machine
Learning Application Papers
in Social Computing Report
Where Human-Labeled Train-
ing Data Comes From?” [13]

There was “wide divergence” in whether papers followed best
practices for reporting the data annotation process, such as re-
porting: “who the labelers were, what their qualifications were,
whether they independently labeled the same items, whether
inter-rater reliability metrics were disclosed, what level of train-
ing and/or instructions were given to labelers, whether compen-
sation for crowdworkers is disclosed, and if the training data is
publicly available” (p. 325).

Multi-
disciplinary:
“the papers
represented
political science,
public health,
NLP, senti-
ment analysis,
cybersecurity,
content mod-
eration, hate
speech, infor-
mation quality,
demographic
profiling, and
more” (p. 328)

164 “machine learn-
ing application pa-
pers... that classified
tweets from Twitter”
(p. 326)

Yes

3b) Sampling frame



4

Navarro et al., 2022, “Com-
pleteness of reporting of clin-
ical prediction models devel-
oped using supervised machine
learning: a systematic review”
[10]

105 out of 152 studies (69%) reported their eligibility criteria. Epidemiology &
medicine

152 articles on di-
agnostic or prognos-
tic prediction models
across medical fields,
published 2018-2019

Yes

Tooth et al., 2005, “Quality
of Reporting of Observational
Longitudinal Research” [3]

41 out of 49 papers (84%) reported their sampling frame, and
32 out of 49 papers (65%) reported their eligibility criteria.

Epidemiology &
medicine

49 longitudinal stud-
ies on strokes in six
journals, 1999-2003

No

Porzsolt et al., 2019, “Inclu-
sion and exclusion criteria and
the problem of describing ho-
mogeneity of study populations
in clinical trials” [14]

75 out of 100 studies (75%) reported inclusion criteria. 6 of those
75 studies (8%) also reported exclusion criteria.

Medicine 100 publications on
“quality of life” as-
sessments

No

3d) Outcome variable
Credé and Harms, 2021,
“Three cheers for descrip-
tive statistics—and five more
reasons why they matter” [15]

In a review of literature that was still a work-in-progress at the
time Credé and Harms published this commentary, “Among the
articles coded to date, less than half report the ethnicity of the
participants or the types of jobs held by the participants and
only 56% report data on the industry in which the data were col-
lected. Other interesting—and to meta-analysts potentially im-
portant—information is also remarkably often unreported” (p.
486). (Note: This commentary discusses descriptive statistics
broadly, not just descriptive statistics for outcome variables.)

Industrial and
organizational
psychology

Articles from four
top journals in in-
dustrial and organi-
zational psychology
(number of articles is
not reported)

No

Larson-Hall and Plonsky, 2015,
“Reporting and interpreting
quantitative research findings:
What gets reported and recom-
mendations for the field” [16]

Meta-analyses frequently had to omit large numbers of primary
articles from their analyses due to insufficient descriptive statis-
tics in the primary articles. (Note: This article discusses descrip-
tive statistics broadly, not just descriptive statistics for outcome
variables.)

Second language
acquisition

Approximately 90
meta-analyses in
second language
acquisition

No

3e) Sample size
Plonsky, 2013, “Study Quality
in SLA: An Assessment of De-
signs, Analyses, and Report-
ing Practices in Quantitative
L2 Research” [17]

99% of studies reported sample size. Second language
acquisition

606 studies in sec-
ond language acqui-
sition journals, pub-
lished 1990-2010

No

Tooth et al., 2005, “Quality
of Reporting of Observational
Longitudinal Research” [3]

100% of 49 longitudinal studies reported the total number of
participants from the first wave of their study. However, only
25 out of 49 (51%) reported the number of participants after
attrition at each subsequent wave.

Epidemiology &
medicine

49 longitudinal stud-
ies on strokes in six
journals, 1999-2003

No

3f) Missingness
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McKnight et al., 2007, “Miss-
ing Data: A Gentle Introduc-
tion” [18]

Around 90% of articles had missing data, and the average
amount of missing data per study was over 30%. Furthermore,
“few of the articles included explicit mention of missing data,
and even fewer indicated that the authors attended to missing
data, either by performing statistical procedures or by making
disclaimers regarding the studies in the results and conclusions”
(p. 3).

Psychology Over 300 publica-
tions from a promi-
nent psychology
journal

No

Peugh and Enders, 2004,
“Missing Data in Educational
Research: A Review of Report-
ing Practices and Suggestions
for Improvement” [19]

Among the articles Peugh and Enders reviewed, “[d]etails con-
cerning missing data were seldom reported” and “[t]he methods
used to handle missing data were, in many cases, difficult to as-
certain because explicit descriptions of missing-data procedures
were rare” (p. 537). However, Peugh and Enders were able to
infer the amount of missingness in some studies by examining
the “discrepancy between the reported degrees of freedom for a
given analysis and the degrees of freedom that one would expect
on the basis of the stated sample size and design characteristics”
(p. 537). In articles published in 1999, they detected missing
data in 16% of studies, but they write that this is likely a “gross
underestimate” of the actual prevalence of missing data. Among
articles published in 2003, they were able to detect missing data
in 42% of articles, which is higher than in 1999 due to changes in
reporting practices following a recommendation by an American
Psychological Association task force.

Educational re-
search

989 studies published
in 1999 and 545 stud-
ies published in 2003
in 23 applied educa-
tional research jour-
nals

No

Salganik et al., 2020, Supple-
mentary information for “Mea-
suring the predictability of
life outcomes using a scientific
mass collaboration” [20]

There are many reasons for missing data in survey data, includ-
ing a respondent not participating in a given wave of a longi-
tudinal survey, respondents refusing to answer some questions,
skip patterns in the survey design, and redaction for privacy.
In a modified version of a well-known, high-quality social sur-
vey dataset, 73% of possible data entries were missing, and the
largest source of missingness was survey skip patterns. This
high level of missingness emphasizes the importance of careful
attention to handling missing data.

Sociology 1 study with a well-
known social survey
data set

Yes

Nijman et al., 2022, “Miss-
ing data is poorly handled and
reported in prediction model
studies using machine learning:
a literature review” [21]

“A total of 56 (37%) prediction model studies did not report on
missing data and could not be analyzed further. We included 96
(63%) studies which reported on the handling of missing data.
Across the 96 studies, 46 (48%) did not include information on
the amount or nature of the missing data” (p. 220).

Medicine 152 ML-based clini-
cal prediction model
studies, published
2018-2019

Yes
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Navarro et al., 2022, “Com-
pleteness of reporting of clin-
ical prediction models devel-
oped using supervised machine
learning: a systematic review”
[10]

“Forty-four studies reported how missing data were handled
(28.9%, 95% CI 22.3 to 36.6). The missing data item consists of
four sub-items of which three were rarely addressed in included
studies. Within 28 studies that reported handling of missing
data: three studies reported the software used (10.7%, CI 3.7 to
27.2), four studies reported the variables included in the proce-
dure (14.3%, CI 5.7 to 31.5) and no study reported the number
of imputations (0%, CI 0.0 to 39.0)” (pp. 6-7).

Epidemiology &
medicine

152 articles on di-
agnostic or prognos-
tic prediction models
across medical fields,
published 2018-2019

Yes

Little et al., 2013, “On the Joys
of Missing Data” [22]

“Among the 80 reviewed studies, only 45 (56.25%) mentioned
missing data explicitly in the text or a table of descriptive statis-
tics. Of those 45, only three mentioned testing whether the miss-
ingness was related to other variables, justifying their [missing-
ness at random] assumption” (p. 156).

Pediatric psy-
chology

80 empirical studies
in the 2012 issues of a
pediatric psychology
journal

No

Nicholson et al., 2016, “Attri-
tion in developmental psychol-
ogy” [23]

Among 541 longitudinal studies, only 253 (47%) discussed miss-
ingness due to attrition, and only 99 (18%) explicitly discussed
whether missingness due to attrition was “missing at random,”
“missing completely at random,” or “missing not at random.”

Developmental
psychology

541 longitudinal
studies in major
developmental jour-
nals, published 2009
and 2012

No

Sterner, 2011, “What Is Miss-
ing in Counseling Research?
Reporting Missing Data” [24]

In the first journal, “14 of 66 (21%) articles referenced missing
data on some level. Of these 14 articles, 11 mentioned missing
data specifically... In the remaining 52 JCD articles, no infor-
mation was provided on whether missing data existed.” In the
second journal, “one of 28 (4%) empirically based research ar-
ticles made reference to screening for missing data; however, no
mention was made of missing data in the remaining articles” (p.
56).

Counseling 94 empirical research
articles in two top
counseling journals,
published 2004 to
2008

No

Tooth et al., 2005, “Quality
of Reporting of Observational
Longitudinal Research” [3]

Only 19 out of 49 articles (39%) reported on missing data items
at each longitudinal wave, and only 2 out of 42 articles (5%)
that had missing data in their analyses described imputation,
weighting, or sensitivity analyses for handling missing data.

Epidemiology &
medicine

49 longitudinal stud-
ies on strokes in six
journals, 1999-2003

No

Hussain et al., 2017, “Quality
of missing data reporting and
handling in palliative care tri-
als demonstrates that further
development of the CONSORT
statement is required: a sys-
tematic review” [25]

101 out of 108 studies (94%) reported the number of participants
who were missing in the primary outcome analysis; however,
reporting rates were lower for other details about missing data
and for methods of handling missing data.

Epidemiology 108 articles on pal-
liative care random-
ized controlled trials,
published 2009-2014

No

3g) Dataset for evaluation is representative
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Tooth et al., 2005, “Quality
of Reporting of Observational
Longitudinal Research” [3]

Among several reporting criteria this review examined, “the cri-
teria in the checklist representing selection bias were the least
frequently reported overall” (p. 285). Specifically, selection-in
biases were discussed in 14 out of 49 articles (28%), comparison
of consenters with non-consenters was discussed in 1 out of 47
applicable articles (2%), and loss to follow-up was accounted for
in the analyses of 1/41 applicable articles (5%). Additionally,
37 out of 49 articles (75%) discuss how their results relate to the
target population.

Epidemiology &
medicine

49 longitudinal stud-
ies on strokes in six
journals, 1999-2003

No

MODULE 4: DATA PREPROCESSING
4c) Data transformations
Vandewiele et al., 2021,
“Overly optimistic prediction
results on imbalanced data: a
case study of flaws and benefits
when applying over-sampling”
[9]

Vandewiele et al. analyze 24 papers on pre-term birth predic-
tion and find 11 of these papers improperly transform data (by
oversampling before splitting into train and test sets).

Medicine 24 papers on pre-
term risk prediction

Yes

MODULE 5: MODELING
5d) Model selection method
Neunhoeffer and Sternberg,
2019, “How Cross-Validation
Can Go Wrong and What to
Do About It.” [26]

Neunhoeffer and Sternberg demonstrate that the main findings
of a prominent political science paper fail to reproduce due to
improper model selection. In particular, model selection was
done on the same data that was used for evaluation.

Political Science 1 prominent political
science paper

Yes

5e) Hyper-parameter selection
Dodge et al., 2019, “Show Your
Work: Improved Reporting of
Experimental Results” [27]

Dodge et al. find that among 50 random papers from a promi-
nent natural language processing conference, while 74% of pa-
pers reported at least some information about the best perform-
ing hyperparameters, 10% of fewer reported more specific details
about hyperparameter search or the effect of hyperparameters
on performance.

Natural lan-
guage process-
ing

50 random papers
from a prominent
natural language
processing confer-
ence in 2018

Yes

5f) Appropriate baselines
Sculley et al., 2018, “Winner’s
curse? On pace, progress, and
empirical rigor” [28]

Sculley et al. discuss five papers that provide evidence of im-
proper comparison with baselines in different areas of ML, sug-
gesting that empirical progress in the field can be misleading.

ML 5 papers identifying
poor performance
compared to base-
lines in different
areas of ML

Yes

MODULE 6: DATA LEAKAGE
Introduction
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Kapoor and Narayanan, 2022,
“Leakage and the reproducibil-
ity crisis in ML-based science”
[29]

Kapoor and Narayanan found that leakage affects hundreds of
papers across 17 fields.

Multi-
disciplinary

A survey of leakage
issues across 17 fields

Yes

Train-test separation is maintained
Poldrack et al., 2020, “Estab-
lishment of best practices for
evidence for prediction: A re-
view” [30]

Poldrack et al. find that of the 100 neuropsychiatry studies that
claimed to predict patient outcomes, 45 only reported in-sample
statistical fit as evidence for predictive accuracy.

Neuropsychiatry 100 published stud-
ies between Decem-
ber 24, 2017 and Oc-
tober 30, 2018 in
PubMed using search
terms “fMRI predic-
tion” and “fMRI pre-
dict”

Yes

Dependencies or duplicates between datasets
Roberts et al., 2021, “Com-
mon pitfalls and recommenda-
tions for using machine learn-
ing to detect and prognosticate
for COVID-19 using chest ra-
diographs and CT scans” [31]

Roberts et al. discuss the issue of “Frankenstein” datasets:
datasets that combine multiple other sources of data and can
end up using the same data twice—for instance, if two datasets
rely on the same underlying data source are combined into a
larger dataset.

Medicine 62 studies that
claimed to diagnose
or prognose Covid-19
using chest x-rays

Yes

MODULE 7: METRICS AND UNCERTAINTY
7b) Uncertainty estimates
Simmonds et al., 2022, “How
is model-related uncertainty
quantified and reported in dif-
ferent disciplines?” [32]

Simmonds et al. show that across seven fields, no fields consis-
tently reported complete model uncertainties, and that the type
of uncertainties reported varied by field.

Multi-
disciplinary

496 studies across 7
fields that included
statistical models

No

MODULE 8: GENERALIZABILITY AND LIMITATIONS
Introduction
Raji et al., 2022, “The Fallacy
of AI Functionality” [33]

Raji et al. review real-world applications of technologies that
claim to use ML and cateogorize several ways in which such
technology frequently failed, including “lack of robustness to
changing external conditions” (p. 9).

Computer sci-
ence and law
(real-world ML
applications)

283 cases of failures
of technology that
claimed to be AI,
ML or data-driven
between 2012 to 2021

Yes
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Liao et al., 2021, “Are We
Learning Yet? A Meta-Review
of Evaluation Failures Across
Machine Learning” [34]

Liao et al. find that the same types of evaluation failures occur
across a wide range of ML tasks and algorithms. They provide
a taxonomy of common internal and external validity failures.

Computer
science

107 “survey pa-
pers from computer
vision, natural lan-
guage processing,
recommender sys-
tems, reinforcement
learning, graph
processing, metric
learning, and more”

Yes

Reporting on external validity falls short in past literature
Tooth et al., 2005, “Quality
of Reporting of Observational
Longitudinal Research” [3]

37 out of 49 papers (75%) discuss how the findings from their
sample generalize to their target population, and 26 out of 49
papers (53%) discuss generalizability beyond the target popula-
tion.

Epidemiology &
medicine

49 longitudinal stud-
ies on strokes in six
journals, 1999-2003

No

Bozkurt et al., 2020, “Re-
porting of demographic data
and representativeness in ma-
chine learning models using
electronic health records” [35]

The authors argue that descriptive statistics about the study
sample should be provided in order to be transparent about rep-
resentativeness of the target population. They find that of 164
studies that trained ML models with electronic health records
data, “Race/ethnicity was not reported in 64%; gender and age
were not reported in 24% and 21% of studies, respectively. So-
cioeconomic status of the population was not reported in 92%
of studies.” They also find, “Few models (12%) were validated
using external populations” (p. 1878).

Medicine 164 studies that
trained ML mod-
els with electronic
health records data

Yes

Navarro et al., 2023, “System-
atic review finds ‘spin’ prac-
tices and poor reporting stan-
dards in studies on machine
learning-based prediction mod-
els” [36]

“In the main text, 86/152 (56.6% [95% CI 48.6 - 64.2]) stud-
ies made recommendations to use the model in clinical practice,
however, 74/86 (86% [95% CI 77.2 - 91.8]) lacked external val-
idation in the same article. Out of the 13/152 (8.6% [95% CI
5.1 - 14.1]) studies that recommended the use of the model in
a different setting or population, 11/ 13 (84.6% [95% CI 57.8 -
95.7]) studies lacked external validation” (p. 104).

Epidemiology &
medicine

152 articles on di-
agnostic or prognos-
tic prediction models
across medical fields,
published 2018-2019

Yes
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